## VIRTUOUS CIRCLES ENHANCING THE TRANSITION TO RENEWABLES: CAUSAL RELATIONS AMONG ELECTRIC VEHICLES, ROOFTOP SOLAR, INSTALLATION COSTS, AND CHARGING STATIONS

ROBERT K. KAUFMANN DEREK NEWBERRY CHEN XIN SUCHARITA GOPAL **PROJECT LINK JUNE 18, 2019** 

#### WHAT YOU SHOULD REMEMBER

- Causal relations among rooftop solar, its cost of installation, electric vehicles, and changing stations create feedback loops that accelerate the transition to carbon free sustainable technologies.
- Causal relations are created by 'learning by doing' and the psychology of decision making in the real world.
- Policy must use the spatial and psychological nature of decision making to initiate feedback loops that accelerate the transition to carbon free sustainable technologies.

# SINGLE FACTOR APPROACH

- Electric vehicles
  - Up front cost
  - Range anxiety
  - Demographics of adopters
- Charging stations
  - Location
  - Type
- Rooftop solar
  - Levelized cost of electricity
- Installation costs
  - Learning by doing

#### **SYSTEM DYNAMICS**

• Is there a way to seed the system?



• Are there feedback loops?



Causal relations among components

#### Charging stations Installation Costs

#### Electric vehicle purchases Rooftop solar



# METHODOLOGY

- Time series properties
  - Breitung (2000), Im et al (2003) Levin et al (2002)
  - EV & Cost uncertain
  - Convert I(1) to I(0) (first difference)
- Panel causality (Dumitrescu and Hurlin, 2012)

$$y_{i,t} = \alpha_i + \sum_{k=1}^{K} \gamma_i^{(k)} y_{i,t-k} + \sum_{k=1}^{K} \beta_i^{(k)} x_{i,t-k} + \varepsilon_{i,t}$$

- Fixed coefficient model  $\gamma_i^{(n)}$ ,  $\beta_i^{(n)}$  vary across individuals
- Fixed individual effects
- Null: homogeneous noncausality, no  $x \rightarrow y$  any individual
- Alternative heterogeneous non causality,  $0 < x \rightarrow y < N$
- SBC choses lag length

$$W_{N,T}^{Hnc} = \frac{1}{N} \sum_{i=1}^{N} W_{i,T}, \qquad \qquad W_{i,T} = \hat{\theta}_{i}' R' \Big[ \hat{\sigma}_{i}^{2} R (Z_{i}' Z_{i})^{-1} R' \Big]^{-1} R \hat{\theta}_{i} = \frac{\hat{\theta}_{i}' R' \Big[ R (Z_{i}' Z_{i})^{-1} R' \Big]^{-1} R \hat{\theta}_{i}}{\hat{\varepsilon}_{i}' \hat{\varepsilon}_{i} / (T - 2K - 1)},$$

• Distributed  $\chi^2$  ( $N \times K$ )

Dumitrescu, EI and C. Hurlin, 2012, Testing for Granger noncausality in heterogeneous panels, Economic Modelling, 29:1450-1460

#### RESULTS



## **LEVELIZED COSTS & LEARNING CURVE**

#### • $Cost \rightarrow PV$

- Levelized cost of electricity
- Solar \$48.8 per MWh 2018
- Combined cycle (\$42.2 per MWh)

#### • $PV \rightarrow Cost$

- Solar modules are commodities
- 65% costs balance of system
- Local learning



#### **ROOFTOP SOLAR** $\leftrightarrow$ **ELECTRIC VEHICLES**



- Linked by environmental concerns
  - 433% increase station powered by renewable
- Highly visible technologies





# INDIVIDUAL DECISIONS INFLUENCED BY MEMBERS OF THEIR COMMUNITY

- Agent-based models & threshold effects
  - Market share at which consider purchase
  - Zip codes ~43 km<sup>2</sup>
- Norms
  - Descriptive norms those who live near-by
- Collective Efficacy
  - Group capable affect environment
- Empirical Support
  - Social norms information > cost/ benefits EV
  - More likely buy EV when neighbors do
  - Social spatial network experience with EV

# **POLICY IN SPACE AND TIME**

- Goal: Maximize PV & EV
  - Exposure > critical threshold
  - Maximize population Exposure > critical threshold
- Need for exposure defines spatial resolution
  - Federal, state, local
  - Implement at fine scale (e.g. zip code)
- Implementation
  - Largest incentives for earlier adopters
  - Incentives decline beyond critical threshold

#### Federal EV Tax Credit Phase Out Tracker By Automaker

Updated: Current table below includes sales data from the InsideEVs Monthly Plug-in Sales Scorecard – through February 2019

| Manufacturer*                  | <ul> <li>Total Sales</li> <li>2010 - Mar. 2019**</li> </ul> | # To     | Reached /<br>Likely<br>to Reach<br>200,000 |
|--------------------------------|-------------------------------------------------------------|----------|--------------------------------------------|
| Audi                           | 10,218                                                      | 189,782  | 2025                                       |
| BMW                            | 85,888                                                      | 114,112  | 2023                                       |
| Fiat Chrysler Automotive (FCA) | 39,855                                                      | 160,145  | 2025                                       |
| Ford Motor Company             | 114,247                                                     | 88,753   | 2023                                       |
| General Motors ****            | 211,587                                                     | -11,587  | 2018 Q4                                    |
| Honda Motors                   | 27,636                                                      | 172,364  | 2025                                       |
| Hyundai                        | 9,157                                                       | 190,843  | 2025                                       |
| Jaguar                         | 1,001                                                       | 198,999  | 2027                                       |
| Kia                            | 13,325                                                      | 186,675  | 2025                                       |
| Mercedes-Benz                  | 19,193                                                      | 180,807  | 2024                                       |
| Mitsubishi                     | 7,004                                                       | 192,996  | 2025                                       |
| Nissan                         | 132,227                                                     | 67,773   | 2021                                       |
| Porsche                        | 10,712                                                      | 189,288  | 2025                                       |
| Tesla ***                      | 382,573                                                     | -182,573 | 2018 Q3                                    |
| Toyota Motor Corporation       | 99,918                                                      | 100,082  | 2021                                       |
| Volvo                          | 9,841                                                       | 190,159  | 2024                                       |
| Volkswagen                     | 14,277                                                      | 185,723  | 2023                                       |

## CURRENT POLICY FOR ELECTRIC VEHICLES